Breast cancer detection using Histopathology Image with Mini-Batch Stochastic Gradient Descent and Convolutional Neural Network

Author:

Sasirekha N.1,Karuppaiah Jayakumar2,Shekhar Himanshu3,Naga Saranya N.4

Affiliation:

1. Department of ECE, Sona College of Technology, Salem, Tamilnadu, India

2. Department of Biomedical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamilnadu, India

3. Department of ECE, Hindustan Institute of Technology And Science, Kelambakkam, Tamilnadu, India

4. Department of MCA, Meenakshi College of Engineering, Chennai, Tamilnadu, India

Abstract

Cancer is a devastating disease that has far-reaching effects on our culture and economy, in addition to the human lives it takes. Regarding budgetary responsibility, investing just in cancer treatment is not an option. Early diagnosis is a crucial part of the remedy that sometimes gets overlooked. Malignancy is often diagnosed and evaluated using Histopathology Images (HI), which are widely accepted as the gold standard in the field. Yet, even for experienced pathologists, analysing such images is challenging, which raises concerns of inter- and intra-observer variability. The analysis also requires a substantial investment of time and energy. One way that such an examination may be sped up is by making use of computer-assisted diagnostics devices. The purpose of this research is to create a comprehensive cancer detection system using images of breast and prostate histopathology stained with haematoxylin and eosin (H&E). Proposed here is work on improving colour normalisation methods, constructing an integrated model for nuclei segmentation and multiple objects overlap resolution, introducing and evaluating multi-level features for extracting relevant histopathological image and interpretable information, and developing classification algorithms for tasks such as cancer diagnosis, tumor identification, and tumor class labelling. Mini-Batch Stochastic Gradient Descent and Convolutional Neural Network which obtained statistical kappa value for breast cancer histopathology images shows a high degree of consistency in the classification task, with a range of 0.610.80 for benign and low grades and a range of 0.811.0 for medium and high rates. The Support Vector Machine (SVM), on the other hand, shows an almost perfect degree of consistency (0.811.0) across the several breast cancer picture classifications (benign, low, medium, and high).

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3