Transformative Breast Cancer Diagnosis using CNNs with Optimized ReduceLROnPlateau and Early Stopping Enhancements

Author:

R Mahesh T,Thakur Arastu,Gupta Muskan,Sinha Deepak Kumar,Mishra Kritika Kumari,Venkatesan Vinoth Kumar,Guluwadi SureshORCID

Abstract

AbstractBreast cancer stands as a paramount public health concern worldwide, underscoring an imperative necessity within the research sphere for precision-driven and efficacious methodologies facilitating accurate detection. The existing diagnostic approaches in breast cancer often suffer from limitations in accuracy and efficiency, leading to delayed detection and subsequent challenges in personalized treatment planning. The primary focus of this research is to overcome these shortcomings by harnessing the power of advanced deep learning techniques, thereby revolutionizing the precision and reliability of breast cancer classification. This research addresses the critical need for improved breast cancer diagnostics by introducing a novel Convolutional Neural Network (CNN) model integrated with an Early Stopping callback and ReduceLROnPlateau callback. By enhancing the precision and reliability of breast cancer classification, the study aims to overcome the limitations of existing diagnostic methods, ultimately leading to better patient outcomes and reduced mortality rates. The comprehensive methodology includes diverse datasets, meticulous image preprocessing, robust model training, and validation strategies, emphasizing the model's adaptability and reliability in varied clinical contexts. The findings showcase the CNN model's exceptional performance, achieving a 95.2% accuracy rate in distinguishing cancerous and non-cancerous breast tissue in the integrated dataset, thereby demonstrating its potential for enhancing clinical decision-making and fostering the development of AI-driven diagnostic solutions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3