Shiga toxins, glycosphingolipid diversity, and endothelial cell injury

Author:

Schweppe Christian,Karch Helge,Friedrich Alexander,Müthing Johannes

Abstract

SummaryShiga toxin (Stx)-producing Escherichia coli (STEC) cause an enteric illness that results in a spectrum of outcomes ranging from asymptomatic carriage to uncomplicated diarrhea, bloody diarrhea, and the postdiarrheal haemolytic uremic syndrome (HUS), which leads to renal and other organ microvascular thrombosis. Binding of Stx to the glycosphingolipid (GSL) globotriaosylceramide (Gb3Cer/CD77) on endothelial cells followed by receptor-mediated endocytosis is the linchpin in STEC-mediated disease. Only GSLs that associate strongly with lipid rafts appear to carry Stxs retrogradely from the plasma membrane through the Golgi apparatus to the endoplasmic reticulum where they are translocated to the cytosol and exert their toxic function. Thus, the biophysical features of the lipid moiety of GSL receptors may influence its incorporation into certain membrane domains and thereby affect toxin destination. Consequently, a detailed structural analysis of Stx-binding GSLs is required to illuminate the molecular causes that may underlie the different Stx susceptibilities of endothelial cells derived from various vascular beds. Solid phase overlay binding assays of thin-layer chromatography (TLC)-separated GSL preparations employing specific antibodies and/or Stxs in conjunction with anti-Stx-antibodies are commonly used for the identification of Stx-binding GSLs. Such GSL-profiling combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) represents a convenient strategy to structurally characterize Stx-receptors from any biological sources such as primary cells, cell lines, or organs. This approach may be helpful to gain insights into Stx-induced impairment of target cells that is suggested to originate at least partly from the structural heterogeneity of the cellular ligands of Stxs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3