Defense-through-Deception Network Security Model: Securing University Campus Network from DOS/DDOS Attack

Author:

A. Naagas M.,L. Mique Jr E.,D. Palaoag T.,S. Dela Cruz J.

Abstract

Denial of Service (DOS) and (DDOS) Distributed Denial of Service attacks have become a major security threat to university campus network security since most of the students and teachers prepare online services such as enrolment, grading system, library etc. Therefore, the issue of network security has become a priority to university campus network management. Using online services in university network can be easily compromised. However, traditional security mechanisms approach such as Defense-In-Depth (DID) Model is outdated in today’s complex network and DID Model has been used as a primary cybersecurity defense model in the university campus network today. However, university administration should realize that Defense-In-Depth (DID) are playing an increasingly limited role in DOS/DDoS protection and this paper brings this fact to light. This paper presents that the Defense-In-Depth (DID) is not capable of defending complex and volatile DOS/DDOS attacks effectively. The test results were presented in this study in order to support our claim. The researchers established a Defense-In-Depth (DID) Network model at the Central Luzon State University and penetrated the Network System using DOS/DDOS attack to simulate the real network scenario. This paper also presents the new approach Defense-through-Deception network security model that improves the traditional passive protection by applying deception techniques to them that give insights into the limitations posed by the Defense-In-Depth (DID) Model. Furthermore, this model is designed to prevent an attacker who has already entered the network from doing damage.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DECEPTWIN: Proactive Security Approach for IoV by Leveraging Deception-based Digital Twins and Blockchain;Proceedings of the 19th International Conference on Availability, Reliability and Security;2024-07-30

2. DDoS Attack Detection in Smart Grid Networks Using Visual Features;2024 2nd International Conference on Cyber Resilience (ICCR);2024-02-26

3. DDoS attack detection in smart grid network using reconstructive machine learning models;PeerJ Computer Science;2024-01-09

4. Evaluation of Internet of Things computer network security and remote control technology;Open Computer Science;2024-01-01

5. Early Prediction of Denial-of-Service Attacks on Campus Area Network Using Ensemble Learning;2023 International Conference on Power Energy, Environment & Intelligent Control (PEEIC);2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3