Affiliation:
1. School of Control and Computer Engineering, North China Electric Power University, Beijing, China
2. Department of Computer Engineering, COMSATS Institute Of Information Technology, Wah cantt, Pakistan
Abstract
Network attacks pose a significant challenge for smart grid networks, mainly due to the existence of several multi-directional communication devices coupling consumers to the grid. One of the network attacks that can affect the smart grid is the distributed denial of service (DDoS), where numerous compromised communication devices/nodes of the grid flood the smart grid network with false data and requests, leading to disruptions in smart meters, data servers, and the state estimator, ultimately effecting the services for end-users. Machine learning-based strategies show distinctive benefits in resolving the challenge of securing the network from DDoS attacks. Regardless, a notable hindrance in deploying machine learning-based techniques is the requirement of model retraining whenever new attack classes arise. Practically, disrupting the normal operations of smart grid is really discouraged. To handle this challenge effectively and detect DDoS attacks without major disruptions, we propose the deployment of reconstructive deep learning techniques. A primary benefit of our proposed technique is the minimum disruption during the introduction of a new attack class, even after complete deployment. We trained several deep and shallow reconstructive models to get representations for each attack type separately, and we performed attack detection by class-specific reconstruction error-based classification. Our technique experienced rigid evaluation via multiple experiments using two well-acknowledged standard databases exclusively for DDoS attacks, including their subsets. Later, we performed a comparative estimation of our outcomes against six methods prevalent within the same domain. Our outcomes reveal that our technique attained higher accuracy, and notably eliminates the requirement of a complete model retraining in the event of the introduction of new attack classes. This method will not only boost the security of smart grid networks but also ensure the stability and reliability of normal operations, protecting the critical infrastructure from ever-evolving network attacks. As smart grid is advancing rapidly, our approach proposes a robust and adaptive way to overcome the continuous challenges posed by network attacks.
Funder
The State Grid Corporation Science and Technology Project
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献