Feature Selection Approach based on Firefly Algorithm and Chi-square

Author:

Mashhour Emad Mohamed,El Houby Enas M. F.,Wassif Khaled Tawfik,Salah Akram I.

Abstract

Dimensionality problem is a well-known challenging issue for most classifiers in which datasets have unbalanced number of samples and features. Features may contain unreliable data which may lead the classification process to produce undesirable results. Feature selection approach is considered a solution for this kind of problems. In this paperan enhanced firefly algorithm is proposed to serve as a feature selection solution for reducing dimensionality and picking the most informative features to be used in classification. The main purpose of the proposedmodel is to improve the classification accuracy through using the selected features produced from the model, thus classification errors will decrease. Modeling firefly in this research appears through simulating firefly position by cell chi-square value which is changed after every move, and simulating firefly intensity by calculating a set of different fitness functionsas a weight for each feature. K-nearest neighbor and Discriminant analysis are used as classifiers to test the proposed firefly algorithm in selecting features. Experimental results showed that the proposed enhanced algorithmbased on firefly algorithm with chi-square and different fitness functions can provide better results than others. Results showed that reduction of dataset is useful for gaining higher accuracy in classification.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilizing Metaheuristic Machine Learning Techniques for Early Diabetes Detection;2023 Second International Conference on Informatics (ICI);2023-11-23

2. Solving the feeder assignment, component sequencing, and nozzle assignment problems for a multi-head gantry SMT machine using improved firefly algorithm and dynamic programming;Advanced Engineering Informatics;2022-04

3. A Comprehensive Survey of Recent Hybrid Feature Selection Methods in Cancer Microarray Gene Expression Data;IEEE Access;2022

4. Sentiment Analysis Method Based on Deep Learning in Adversarial Environment;2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2021-12

5. An Efficient Technique for Disease Prediction by Using Enhanced Machine Learning Algorithms for Categorical Medical Dataset;Information Technology and Control;2021-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3