An Efficient Technique for Disease Prediction by Using Enhanced Machine Learning Algorithms for Categorical Medical Dataset

Author:

Anusuya Veera,Gomathi V

Abstract

In the 20th century, it is evident that there is a massive evolution of chronic diseases. The data mining approaches beneficial in making some medicinal decisions for curing diseases. But medical data may consist of a large number of data, which makes the prediction process a very difficult one. Also, in the medical field, the dataset may involve both the small database and extensive database. This creates the study of a complex one for disease prediction mechanism. Hence, in this paper, we intend to use a practical machine learning approach for disease prediction of both large and small datasets. Among the various machine learning procedures, classification, and clusters method play a significant role. Therefore, we introduced the enhanced classification and clusters approach in this work for obtaining better accuracy results for disease prediction. In this proposed method, a process of preprocessing is involved, followed by Eigen vector extraction, feature selection, and classification Further, the most suitable features are selected with the use of Multi-Objective based Ant Colony Optimization (MO-ACO) from the extracted features for increasing the classification and clusters. Here we have shown the novelty in every stage of the implementation, such as feature selection, feature extraction, and the final prediction stage. The proposed method will be compared with the existing technique on the measure of precision, NMI, execution time, recall, and Accuracy. Here we conclude with the solution having more accuracy for both small and large datasets.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image Captioning based on Encoder Decoder Architecture;2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS);2024-03-14

2. A comparison of the performance of data mining classification algorithms on medical datasets with the application of data normalization;AIP Conference Proceedings;2024

3. Prediction Of User Ratings For Drug Side Effects Using Deep Neural Network With Contextual Co-occurrence Based Word-Embedding Vector;2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT);2023-10-13

4. D-t-SNE: Predicting heart disease based on hyper parameter tuned MLP;Biomedical Signal Processing and Control;2023-09

5. Comparative evaluation of automated machine learning techniques for breast cancer diagnosis;Biomedical Signal Processing and Control;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3