Forensic and Automatic Speaker Recognition System

Author:

Singh Satyanand

Abstract

<span lang="EN-US">Current Automatic Speaker Recognition (ASR) System has emerged as an important medium of confirmation of identity in many businesses, ecommerce applications, forensics and law enforcement as well. Specialists trained in criminological recognition can play out this undertaking far superior by looking at an arrangement of acoustic, prosodic, and semantic attributes which has been referred to as structured listening. An algorithmbased system has been developed in the recognition of forensic speakers by physics scientists and forensic linguists to reduce the probability of a contextual bias or pre-centric understanding of a reference model with the validity of an unknown audio sample and any suspicious individual. Many researchers are continuing to develop automatic algorithms in signal processing and machine learning so that improving performance can effectively introduce the speaker’s identity, where the automatic system performs equally with the human audience. In this paper, I examine the literature about the identification of speakers by machines and humans, emphasizing the key technical speaker pattern emerging for the automatic technology in the last decade. I focus on many aspects of automatic speaker recognition (ASR) systems, including speaker-specific features, speaker models, standard assessment data sets, and performance metrics</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AFPM: A Low-Cost and Universal Adversarial Defense for Speaker Recognition Systems;IEEE Transactions on Information Forensics and Security;2024

2. Forensic linguistics: A scientometric review;Cogent Arts & Humanities;2023-05-23

3. Forensic Speaker Recognition System using Machine Learning;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23

4. MFCC ve LBP Yöntemlerinin Karşılaştırılması ile Konuşmacı Tanıma ve Konuşmacı Doğrulama;Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi;2022-12-15

5. Decision-based adversarial attack for speaker recognition models;Proceedings of the 2022 6th International Conference on Computer Science and Artificial Intelligence;2022-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3