Author:
Ferdoush Zannatul,Mahmud Booshra Nazifa,Chakrabarty Amitabha,Uddin Jia
Abstract
In the presence of the deregulated electric industry, load forecasting is more demanded than ever to ensure the execution of applications such as energy generation, pricing decisions, resource procurement, and infrastructure development. This paper presents a hybrid machine learning model for short-term load forecasting (STLF) by applying random forest and bidirectional long short-term memory to acquire the benefits of both methods. In the experimental evaluation, we used a Bangladeshi electricity consumption dataset of 36 months. The paper provides a comparative study between the proposed hybrid model and state-of-art models using performance metrics, loss analysis, and prediction plotting. Empirical results demonstrate that the hybrid model shows better performance than the standard long short-term memory and the bidirectional long short-term memory models by exhibiting more accurate forecast results.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献