Machine Learning Algorithms for Predicting Energy Consumption in Educational Buildings

Author:

Elhabyb Khaoula1ORCID,Baina Amine1,Bellafkih Mostafa1ORCID,Deifalla Ahmed Farouk2ORCID

Affiliation:

1. National Institute of Posts and Telecommunications (INPT), Rabat, Morocco

2. Future University Cairo in Egypt, Cairo, Egypt

Abstract

In the past few years, there has been a notable interest in the application of machine learning methods to enhance energy efficiency in the smart building industry. The paper discusses the use of machine learning in smart buildings to improve energy efficiency by analyzing data on energy usage, occupancy patterns, and environmental conditions. The study focuses on implementing and evaluating energy consumption prediction models using algorithms like long short-term memory (LSTM), random forest, and gradient boosting regressor. Real-life case studies on educational buildings are conducted to assess the practical applicability of these models. The data is rigorously analyzed and preprocessed, and performance metrics such as root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to compare the effectiveness of the algorithms. The results highlight the importance of tailoring predictive models to the specific characteristics of each building’s energy consumption.

Funder

Centre National pour la Recherche Scientifique et Technique

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3