Estimating the energy consumption for residential buildings in semiarid and arid desert climate using artificial intelligence

Author:

Wefki Hossam,Khallaf Rana,Ebid Ahmed M.

Abstract

AbstractThis research aims to develop predictive models to estimate building energy accurately. Three commonly used artificial intelligence techniques were chosen to develop a new building energy estimation model. The chosen techniques are Genetic Programming (GP), Artificial Neural Network (ANN), and Evolutionary Polynomial Regression (EPR). Sixteen energy efficiency measures were collected and used in designing and evaluating the proposed models, which include building dimensions, orientation, envelope construction materials properties, window-to-wall ratio, heating and cooling set points, and glass properties. The performance of the developed models was evaluated in terms of the RMS, R2, and MAPE. The results showed that the EPR model is the most accurate and practical model with an error percent of 2%. Additionally, the energy consumption was found to be mainly governed by three factors which dominate 87% of the impact; which are building size, Solar Heating Glass Coefficient (SHGC), and the target inside temperature in summer.

Funder

Future University in Egypt

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3