Author:
Abdar Moloud,R. Niakan Kalhori Sharareh,Sutikno Tole,Much Ibnu Subroto Imam,Arji Goli
Abstract
Heart diseases are among the nation’s leading couse of mortality and moribidity. Data mining teqniques can predict the likelihood of patients getting a heart disease. The purpose of this study is comparison of different data mining algorithm on prediction of heart diseases. This work applied and compared data mining techniques to predict the risk of heart diseases. After feature analysis, models by five algorithms including decision tree (C5.0), neural network, support vector machine (SVM), logistic regression and k-nearest neighborhood (KNN) were developed and validated. C5.0 Decision tree has been able to build a model with greatest accuracy 93.02%, KNN, SVM, Neural network have been 88.37%, 86.05% and 80.23% respectively. Produced results of decision tree can be simply interpretable and applicable; their rules can be understood easily by different clinical practitioner.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献