An Innovative Penalty based Heart Disease Prediction system using Novel Random Forest over Logistic Regression Classifier Algorithm

Author:

Teja P.P.S.,Veeramani T.

Abstract

Aim: The main goal of the research is see how accurately predicting heart disease by Logistic Regression (LR) and Novel Random Forest(RF) Classifications. Materials and Methods: Novel Random forest appealed on a heart dataset which consists of 200 records A framework for predicting heart disease in the medical field has been proposed and developed to compare the RF with a LR classifier. The sample size was calculated to be 55 for each group with 80% G performance. The sample size was calculated using a Clincalc analysis with Alpha and Beta values of 0.05 and 0.5, pretest performance of 80%, and enrollment rate of 1. The Accuracy of the classifier was Evaluated and Recorded. Results: The LR produces 89.0% in predicting the heart disease on the data set used whereas the Novel Random forest classifier predicts the same at the rate of 95.46% of the time with a statistically significant difference between the two groups (P=0.03; P<0.05) with confidence interval 95%. Conclusion: RF is better compared with LR in terms of both precision and accuracy.

Publisher

RosNOU

Subject

General Medicine,Materials Chemistry,General Medicine,General Medicine,General Materials Science,General Medicine,General Medicine,Aerospace Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3