Comparative study of the price penalty factors approaches for Bi-objective dispatch problem via PSO

Author:

Meziane Mohammed Amine,Mouloudi Youssef,Draoui Abdelghani

Abstract

One of the main objectives of electricity dispatch centers is to schedule the operation of available generating units to meet the required load demand at minimum operating cost with minimum emission level caused by fossil-based power plants. Finding the right balance between the fuel cost the green gasemissionsis reffered as Combined Economic and Emission Dispatch (CEED) problem which is one of the important optimization problems related the operationmodern power systems. The Particle Swarm Optimization algorithm (PSO) is a stochastic optimization technique which is inspired from the social learning of birds or fishes. It is exploited to solve CEED problem. This paper examines the impact of six penalty factors like "Min-Max", "Max-Max", "Min-Min", "Max-Min", "Average" and "Common" price penalty factors for solving CEED problem. The Price Penalty Factor for the CEED is the ratio of fuel cost to emission value. This bi-objective dispatch problem is investigated in the Real West Algeria power network consisting of 22 buses with 7 generators. Results prove capability of PSO in solving CEED problem with various penalty factors and it proves that Min-Max price penalty factor provides the best compromise solution in comparison to the other penalty factors.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3