Rational Application of Electric Power Production Optimization through Metaheuristics Algorithm

Author:

Santos Eliton Smith dosORCID,Nunes Marcus Vinícius AlvesORCID,Nascimento Manoel Henrique ReisORCID,Leite Jandecy Cabral

Abstract

The aim of this manuscript is to introduce solutions to optimize economic dispatch of loads and combined emissions (CEED) in thermal generators. We use metaheuristics, such as particle swarm optimization (PSO), ant lion optimization (ALO), dragonfly algorithm (DA), and differential evolution (DE), which are normally used for comparative simulations, and evaluation of CEED optimization, generated in MATLAB. For this study, we used a hybrid model composed of six (06) thermal units and thirteen (13) photovoltaic solar plants (PSP), considering emissions of contaminants into the air and the reduction in the total cost of combustibles. The implementation of a new method that identifies and turns off the least efficient thermal generators allows metaheuristic techniques to determine the value of the optimal power of the other generators, thereby reducing the level of pollutants in the atmosphere. The results are presented in comparative charts of the methods, where the power, emissions, and costs of the thermal plants are analyzed. Finally, the comparative results of the methods were analyzed to characterize the efficiency of the proposed algorithm.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3