Comparison between neural network and P&O method in optimizing MPPT control for photovoltaic cell

Author:

Abdullah ِِِAhmed G.,Aziz Mothanna sh.,Hamad Bashar Abdullah

Abstract

The demand for renewable energy has increased because it is considered a clean energy and does not result in any pollution or emission of toxic gases that negatively affect the environment and human health also requiring little maintenance, and emitting no noise, so it is necessary to develop this type of energy and increase its production capacity. In this research a design of maximum power point tracking (MPPT) control method using Neural Network (NN) for photovoltaic system is presented. First we design a standalone PV system linked to dc boost chopper with MPPT by perturbation and observation P&O technique, and then a design of MPPT by using ANN for the same system is presented. Comparative between two control methods are studied. The results explained in constant and adjustable weather settings such as irradiation and temperature. The results exposed that the proposed MPPT by ANN control can improve the PV array efficiency by reduce the oscillation around the MPP that accure in P&O method and so decreases the power losses. As well as decrease the the overshot that accure in transient response, and hence improving the performance of the solar cell.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3