Abstract
Purpose
The main purpose of this controller is to carryout irrigation by the farmers with renewable energy resources.
Design/methodology/approach
The proposed design includes the Deep learning based intelligent stand-alone energy management system used for irrigation purpose. The deep algorithm applied here is Radial basis function neural network which tracks the maximum power, maintains the battery as well as load system.
Findings
The Radial Basis Function Neural Network algorithm is used for carrying out the training process. In comparison with other conventional algorithms, this algorithm outperforms by higher efficiency and lower tracking time without oscillation.
Research limitations/implications
It is little complex to implement the hardware setup of neural network in terms of training process but the work is under progress.
Practical implications
The practical hardware implementation is under progress.
Social implications
If controller are implemented in a real-time environment, definitely it helps the human-less farming and irrigation process.
Originality/value
If this system is implemented in real-time environment, every farmer gets benefitted.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献