Author:
Elmarghichi Mouncef,Bouzi Mostafa,Ettalabi Naoufl
Abstract
For techniques used to estimate battery state of charge (SOC) based on equivalent electric circuit models (ECMs), the battery equivalent model parameters are affected by factors such as SOC, temperature, battery aging, leading to SOC estimation error. Therefore, it is necessary to accurately identify these parameters. Updating battery model parameters constantly also known as online parameter identification can effectively solve this issue. In this paper, we propose a novel strategy based on the sunflower optimization algorithm (SFO) to identify battery model parameters and predict the output voltage in real-time. The identification accuracy has been confirmed using empirical data obtained from CALCE battery group (the center for advanced life cycle engineering) performed on the Samsung (INR 18650 20R) battery cell under one electric vehicle (EV) cycle protocol named dynamic stress test. Comparative analysis of SFO and AFRRLS (adaptive forgetting factor of recursive least squares) is carried out to prove the efficiency of the proposed algorithm. Results show that the calibrated model using SFO has superiority compared with AFFRLS algorithm to simulate the dynamic voltage behavior of a lithium-ion battery in EV application.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献