Online parameter estimation of a lithium-ion battery based on sunflower optimization algorithm

Author:

Elmarghichi Mouncef,Bouzi Mostafa,Ettalabi Naoufl

Abstract

For techniques used to estimate battery state of charge (SOC) based on equivalent electric circuit models (ECMs), the battery equivalent model parameters are affected by factors such as SOC, temperature, battery aging, leading to SOC estimation error. Therefore, it is necessary to accurately identify these parameters. Updating battery model parameters constantly also known as online parameter identification can effectively solve this issue. In this paper, we propose a novel strategy based on the sunflower optimization algorithm (SFO) to identify battery model parameters and predict the output voltage in real-time. The identification accuracy has been confirmed using empirical data obtained from CALCE battery group (the center for advanced life cycle engineering) performed on the Samsung (INR 18650 20R) battery cell under one electric vehicle (EV) cycle protocol named dynamic stress test. Comparative analysis of SFO and AFRRLS (adaptive forgetting factor of recursive least squares) is carried out to prove the efficiency of the proposed algorithm. Results show that the calibrated model using SFO has superiority compared with AFFRLS algorithm to simulate the dynamic voltage behavior of a lithium-ion battery in EV application.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3