Improving accuracy in state of health estimation for lithium batteries using gradient-based optimization: Case study in electric vehicle applications

Author:

El Marghichi MouncefORCID,Dangoury Soufiane,zahrou Younes,Loulijat Azeddine,Chojaa Hamid,Banakhr Fahd A.,Mosaad Mohamed I.ORCID

Abstract

Significant improvements in battery performance, cost reduction, and energy density have been made since the advancements of lithium-ion batteries. These advancements have accelerated the development of electric vehicles (EVs). The safety and effectiveness of EVs depend on accurate measurement and prediction of the state of health (SOH) of lithium-ion batteries; however, this process is uncertain. In this study, our primary goal is to enhance the accuracy of SOH estimation by reducing uncertainties in state of charge (SOC) estimation and measurements. To achieve this, we propose a novel method that utilizes the gradient-based optimizer (GBO) to evaluate the SOH of lithium batteries. The GBO minimizes a cost with the aim of selecting the optimal candidate for updating the SOH through a memory-fading forgetting factor. We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. Our method consistently outperformed the alternatives, with the GBO achieving the lowest maximum error. In EV scenarios, GBO exhibited maximum errors ranging from 0.65% to 1.57% and mean errors ranging from 0.21% to 0.57%. Similarly, in HEV scenarios, GBO demonstrated maximum errors ranging from 0.81% to 3.21% and mean errors ranging from 0.39% to 1.03%. Furthermore, our method showcased superior predictive performance, with low values for mean squared error (MSE) (<1.8130e-04), root mean squared error (RMSE) (<1.35%), and mean absolute percentage error (MAPE) (<1.4).

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3