Performance analysis of beam divergence propagation through rainwater and snow pack in free space optical communication

Author:

Ali Mustafa H.,Ajel Rehab I.,Abdul-kader Hussain Samira

Abstract

In the present work the future communication requirements need to fulfill with high data rate, FSO (free space optic) with it is tremendous potential is the solution. This research observed the effectiveness analysis of FSO systems by modifying one of the most important FSO parameters beam divergence, under the most affected weather attenuating condition Rainwater and snow pack. The simulation is obtained and analyzed under single channels CSRZ-FSO (carrier-suppressed return-to-zero/free space optical) systems having capacity of 40 Gbps between two transceivers with variable distance. The connection is presently under 5 meteorological turbulences (light rain, medium rain, wet snow, heavy rain and dry snow). The results show the heavy rain and dry snow have a very high attenuation carried out in terms of Q-factor. this result led us to conclude that small divergence offers significant performance improvement for FSO link and this performance decrease every time the beam divergence increase, Therefore, to build inexpensive and reliable transmission media, we go with new method that still in the experiment area called hybrid RF/FSO (radio frequency/free space optical) that compatible with atmospherically status.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bootstrapped low complex iterative LDPC decoding algorithms for free-space optical communication links;EURASIP Journal on Wireless Communications and Networking;2023-08-16

2. Optimal free space optical fronthaul framework for 5G Cran;International Journal of Information Technology;2023-07-19

3. A Review of Variable-Beam Divergence Angle FSO Communication Systems;Photonics;2023-06-30

4. Free Space Optical Communication System: Impact of Weather Conditions;2022 International Conference on Signal and Information Processing (IConSIP);2022-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3