Bootstrapped low complex iterative LDPC decoding algorithms for free-space optical communication links

Author:

Youssef Albashir A.ORCID

Abstract

AbstractIn recent years, much research has been devoted to free-space optical communication (FSO). The unregulated spectrum, low implementation costs, and robust security of FSO systems all are of great importance which lead to a wide range of applications for FSO links, from terrestrial communications to satellite communications. However, the fundamental limitation with FSO links is atmospheric turbulence (AT) caused by fading, significantly reducing link performance. Random phenomena are the best characteristic of atmospheric turbulence caused by changes in the air’s refractive index over time. Numerous probability density functions of the AT models were presented to model the randomness in AT channels. The Log-Normal (LN) channel model is for weak atmospheric turbulence, while the Gamma–Gamma (G–G) channel is selected for moderate and strong atmospheric turbulence. The impacts of geometric losses, attenuation due to weather, and errors due to misalignment are addressed using LN and G–G channels. Channel coding is one of the possible solutions for mitigating such FSO channel impairments as the low-density parity check (LDPC) codes. In this article, the Weighted Bit Flipping (Algorithm (1)), Implementation Efficient Reliability Ratio Weighted Bit Flipping (Algorithm (2)), and Min-Sum (Algorithm (3)) algorithms are compared and evaluated against FSO atmospheric turbulence channels. In addition, two novel algorithms are proposed to enhance the complexity or Bit Error Rate performance of LDPC decoding over FSO channels. The results showed an impressive improvement of the coded FSO system by employing the proposed algorithms compared to the existing LDPC decoders for FSO communications from the point of all comparison parameters.

Funder

Arab Academy for Science, Technology & Maritime Transport

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3