Predicting machine failure using recurrent neural network-gated recurrent unit (RNN-GRU) through time series data

Author:

Z. Zainuddin,E. A. P. Akhir,M. H. Hasan

Abstract

Time series data often involves big size environment that lead to high dimensionality problem. Many industries are generating time series data that continuously update each second. The arising of machine learning may help in managing the data. It can forecast future instance while handling large data issues. Forecasting is related to predicting task of an upcoming event to avoid any circumstances happen in current environment. It helps those sectors such as production to foresee the state of machine in line with saving the cost from sudden breakdown as unplanned machine failure can disrupt the operation and loss up to millions. Thus, this paper offers a deep learning algorithm named recurrent neural network-gated recurrent unit (RNN-GRU) to forecast the state of machines producing the time series data in an oil and gas sector. RNN-GRU is an affiliation of recurrent neural network (RNN) that can control consecutive data due to the existence of update and reset gates. The gates decided on the necessary information to be kept in the memory. RNN-GRU is a simpler structure of long short-term memory (RNN-LSTM) with 87% of accuracy on prediction.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anomaly Detection on Natural Gas Pipeline Operational Data Using GRU Method;2024 International Conference on Data Science and Its Applications (ICoDSA);2024-07-10

2. GRU Based MCS Selection in Tactical Vehicle Communication;Journal of Machine and Computing;2024-07-05

3. A Software Reliability Model Considering a Scale Parameter of the Uncertainty and a New Criterion;Mathematics;2024-05-23

4. Multi-step wind power prediction scheme based on Patch attention mechanism;2024 7th International Conference on Energy, Electrical and Power Engineering (CEEPE);2024-04-26

5. Prediction of Oil Production Using Optimized Gated Recurrent Unit (GRU);2024 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI);2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3