Author:
Munandar Devi,Rozie Andri Fachrur,Arisal Andria
Abstract
Sentiment analysis of short texts is challenging because of its limited context of information. It becomes more challenging to be done on limited resource language like Bahasa Indonesia. However, with various deep learning techniques, it can give pretty good accuracy. This paper explores several deep learning methods, such as multilayer perceptron (MLP), convolutional neural network (CNN), long short-term memory (LSTM), and builds combinations of those three architectures. The combinations of those three architectures are intended to get the best of those architecture models. The MLP accommodates the use of the previous model to obtain classification output. The CNN layer extracts the word feature vector from text sequences. Subsequently, the LSTM repetitively selects or discards feature sequences based on their context. Those advantages are useful for different domain datasets. The experiments on sentiment analysis of short text in Bahasa Indonesia show that hybrid models can obtain better performance, and the same architecture can be directly used in another domain-specific dataset.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献