GloVe-CNN-BiLSTM Model for Sentiment Analysis on Text Reviews

Author:

Xiaoyan Li12ORCID,Raga Rodolfo C.3,Xuemei Shi1

Affiliation:

1. College of Computer, Huainan Normal University, Huainan 232000, China

2. College of Computing and Information Technologies, National University, Manila, Philippines

3. Computer Studies and Engineering Department, Jose Rizal University, Mandaluyong City, Philippines

Abstract

Nowadays, social media networks generate a tremendous amount of social information from their users. To understand people’s views and sentimental tendencies on a commodity or an event timely, it is necessary to conduct text sentiment analysis on the views expressed by users. For the microblog comment data, it is always mixed with long and short texts, which is relatively complex. Especially for long text data, it contains a lot of content, and the correlation between words is more complex than that in short text. To study the sentiment classification of these mixed texts composed of long-text and short-text, this research proposes an optimized GloVe-CNN-BiLSTM-based sentiment analysis model. In this model, GloVe is used to vectorize words, and CNN is given to represent part space character. BiLSTM is used to build temporal relationship. Twitter’s comment data on COVID-19 is used as an experimental dataset. The results of the experiments suggest that this method can effectually identify the sentimental tendency of users’ online comments, and the accuracy of sentiment classification on complete-text, long-text, and short-text can achieve to 0.9565, 0.9509, and 0.9560, respectively, which is obviously higher than other deep learning models. At the same time, experiments show that this method has good field expansion.

Funder

Special Research Project of Humanities and Social Sciences of the Ministry of Education

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3