Hybrid gated recurrent unit bidirectional-long short-term memory model to improve cryptocurrency prediction accuracy

Author:

Ferdiansyah Ferdiansyah,Othman Siti Hajar,Md Radzi Raja Zahilah,Stiawan Deris,Sutikno Tole

Abstract

<span lang="EN-US">Cryptocurrency is a virtual or digital currency used in financial systems that utilizes blockchain technology and cryptographic functions to gain transparency, decentralization, and conservation. Cryptocurrency prices have a high level of fluctuation; thus, tools are needed to monitor and predict them. RNN is a deep learning model that is capable of strongly predicting data time series. Some types of Recurrent Nureal Network layers, such as Long Short Term Memory, have been used in previous studies to prediction common used currency. In this study, we used the Gate Recurrent Unit and Bidirectional</span><span lang="EN-US">–</span><span lang="EN-US">LSTM hybrid model to predict cryptocurrency prices to improve the accuracy of previously proposed prediction LSTM Model to predict the Bitcoin,  Using four cryptocurrencies (Bitcoin, Ehtereum, Ripple, and Binance), we obtained very good results with RMSE after normalization the results get closer to 0 and with MAPE values all below &lt;10%.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3