Author:
Bouslimi Jihen,Boubaker Sahbi,Tissaoui Kais
Abstract
This paper evaluates the performance of the Long Short-Term Memory (LSTM) deep learning algorithm in forecasting Bitcoin and Ethereum prices during the COVID-19 epidemic, using their high-frequency price information, ranging from December 31, 2019, to December 31, 2020. Deep learning (DL) techniques, which can withstand stylized facts, such as non-linearity and long-term memory in high-frequency data, were utilized in this paper. The LSTM algorithm was employed due to its ability to perform well with time series data by reducing fading gradients and reliance over time. The obtained empirical results demonstrate that the LSTM technique can predict both Ethereum and Bitcoin prices. However, the performance of this algorithm decreases as the number of hidden units and epochs grows, with 100 hidden units and 200 epochs delivering maximum forecast accuracy. Furthermore, the performance study demonstrates that the LSTM approach gives more accurate forecasts for Ethereum than for Bitcoin prices, indicating that Ethereum is more prominent than Bitcoin. Moreover, the increased accuracy of forecasting the Ethereum price made it more reliable than Bitcoin during the COVID-19 coronavirus crisis. As a result, cryptocurrency traders might focus on trading Ethereum to increase their earnings during a crisis.
Publisher
Engineering, Technology & Applied Science Research
Reference34 articles.
1. S. A. Gyamerah, "On forecasting the intraday Bitcoin price using ensemble of variational mode decomposition and generalized additive model," Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 3, pp. 1003–1009, Mar. 2022.
2. R. K. Jana, I. Ghosh, and D. Das, "A differential evolution-based regression framework for forecasting Bitcoin price," Annals of Operations Research, vol. 306, no. 1, pp. 295–320, Nov. 2021.
3. P. Katsiampa, "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, vol. 158, pp. 3–6, Sep. 2017.
4. K. Tissaoui, T. Zaghdoudi, and K. I. Alfreahat, "Can intraday public information explain Bitcoin Returns and Volatility? A PGARCH-Based Approach," Economics Bulletin, vol. 40, no. 3, pp. 2085–2092, 2020.
5. A. Azari, "Bitcoin Price Prediction: An ARIMA Approach." arXiv, Apr. 04, 2019.