Cervical cancer detection method using an improved cellular neural network (CNN) algorithm

Author:

Azamimi Abdullah Azian,Dickson Giong Aafion Fonetta,Hanin Zahri Nik Adilah

Abstract

<span>Cervical cancer is the second most common in Malaysia and the fourth frequent cancer among women in worldwide.  Pap smear test is often ignored although it is actually useful, beneficial and essential as screening tool for cervical cancer. However, Pap smear images have low sensitivity as well as specificity. Therefore, it is difficult to determine whether the abnormal cells are cancerous or not. Recently, computer-based algorithms are widely used in cervical cancer screening. In this study, an improved cellular neural network (CNN) algorithm is proposed as the solution to detect the cancerous cells in real-time by undergoing the image processing of Pap smear images. A few templates are combined and modified to form an ideal CNN algorithm to detect the cancerous cells in total of 115 Pap smear images. A MATLAB based CNN is developed for an automated detection of cervix cancerous cells where the templates segmented the nucleus of the cells. From the simulation results, our proposed CNN algorithm can detect the cervix cancer cells automatically with more than 88% accuracy.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3