Comparison of malware detection techniques using machine learning algorithm

Author:

Syuhada Selamat Nur,Mohd Ali Fakariah Hani

Abstract

<p>Currently, the volume of malware grows faster each year and poses a thoughtful global security threat. The number of malware developed increases as computers became interconnected, at an alarming rate in the 1990s. This scenario resulted the increment of malware. It also caused many protections are built to fight the malware. Unfortunately, the current technology is no longer effective to handle more advanced malware. Malware authors have created them to become more difficult to be evaded from anti-virus detection. In the current research, Machine Learning (ML) algorithm techniques became more popular to the researchers to analyze malware detection. In this paper, researchers proposed a defense system which uses three ML algorithm techniques comparison and select them based on the high accuracy malware detection. The result indicates that Decision Tree algorithm is the best detection accuracy compares to others classifier with 99% and 0.021% False Positive Rate (FPR) on a relatively small dataset.</p>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Study on the Performance of Machine learning Algorithms for Malware Detection and Classification;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

2. Secure and efficient storage approach for cloud environment using hybrid machine learning techniques;Journal of Discrete Mathematical Sciences and Cryptography;2024

3. Robust Malicious Executable Detection Using Host-Based Machine Learning Classifier;Computers, Materials & Continua;2024

4. Achieving Organizational Effectiveness through Machine Learning Based Approaches for Malware Analysis and Detection;Data and Metadata;2023-12-29

5. Features Reduction with PCA Technique for Malware Detection Using Machine Learning;2023 IEEE 9th International Conference on Computing, Engineering and Design (ICCED);2023-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3