Abstract
Introduction: as technology usage grows at an exponential rate, cybersecurity has become a primary concern. Cyber threats have become increasingly advanced and specific, posing a severe risk to individuals, businesses, and even governments. The growing complexity and sophistication of cyber-attacks are posing serious challenges to traditional cybersecurity methods. As a result, machine learning (ML) techniques have emerged as a promising solution for detecting and preventing these attacks. Aim: this research paper offers an extensive examination of diverse machine learning algorithms that have the potential to enhance the intelligence and overall functionality of applications. Methods: the main focus of this study is to present the core principles of distinct machine learning methods and demonstrate their versatile applications in various practical fields such as cybersecurity systems, smart cities, healthcare, e-commerce, and agriculture. By exploring these applications, this paper contributes to the understanding of how machine learning techniques can be effectively employed across different domains. The article then explores the current and future prospects of ML in cybersecurity. Results: this paper highlights the growing importance of ML in cybersecurity and the increasing demand for skilled professionals who can develop and implement ML-based solutions. Conclusion: overall, the present article presents a thorough examination of the role of machine learning (ML) in cybersecurity, as well as its current and future prospects. It can be a valuable source of information for researchers, who seek to grasp the potential of ML in enhancing cybersecurity
Publisher
Salud, Ciencia y Tecnologia
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献