Achieving Organizational Effectiveness through Machine Learning Based Approaches for Malware Analysis and Detection

Author:

Alimul Haque MdORCID,Ahmad SultanORCID,Sonal DeepaORCID,Abdeljaber Hikmat A. M.ORCID,Mishra B.K.,Eljialy A.E.M.ORCID,Alanazi SultanORCID,Nazeer JabeenORCID

Abstract

Introduction: as technology usage grows at an exponential rate, cybersecurity has become a primary concern. Cyber threats have become increasingly advanced and specific, posing a severe risk to individuals, businesses, and even governments. The growing complexity and sophistication of cyber-attacks are posing serious challenges to traditional cybersecurity methods. As a result, machine learning (ML) techniques have emerged as a promising solution for detecting and preventing these attacks. Aim: this research paper offers an extensive examination of diverse machine learning algorithms that have the potential to enhance the intelligence and overall functionality of applications. Methods: the main focus of this study is to present the core principles of distinct machine learning methods and demonstrate their versatile applications in various practical fields such as cybersecurity systems, smart cities, healthcare, e-commerce, and agriculture. By exploring these applications, this paper contributes to the understanding of how machine learning techniques can be effectively employed across different domains. The article then explores the current and future prospects of ML in cybersecurity. Results: this paper highlights the growing importance of ML in cybersecurity and the increasing demand for skilled professionals who can develop and implement ML-based solutions. Conclusion: overall, the present article presents a thorough examination of the role of machine learning (ML) in cybersecurity, as well as its current and future prospects. It can be a valuable source of information for researchers, who seek to grasp the potential of ML in enhancing cybersecurity

Publisher

Salud, Ciencia y Tecnologia

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3