Abstract
<span>Semantically, objects in unstructured document are related each other to perform a certain entity relation. This certain entity relation such: drug-drug interaction through their compounds, buyer-seller relationship through the goods or services, etc. Motivated by those kind of interaction, this study proposes a method to extract those objects and their interactions. It is presented a general framework of object-interaction mining of large corpora. The framework is started with the initial step in extracting a single object in the unstructured document. In this study, the initial step is a pattern learning method that is applied to drug-label documents to extract drug-names. We utilize an existing external knowledge to identify a certain regular expressions surrounding the targeted object and the probabilities of those regular expression, to perform the pattern learning process. The performance of this pattern learning approach is promising to apply in this relation extraction area. As presented in the results of this study, the best f-score performance of this method is 0.78 f-score. With adjusting of some parameters and or improving the method, the performance can be potentially improved.</span>
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Users' Emotions Analysis based on Hybrid Feature Extraction Techniques;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2020-12-10
2. Developing an Expert System Application to Detect Childs' Lung Disease;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2020-12-10