Affiliation:
1. Department of Computer Science, Universitas Mercu BuanaUniversity, Indonesia
Abstract
In order to solve some problems of importance of words and missing relations of semantic between words in the emotional analysis of e-learning systems, the TF-IWF algorithm weighted Word2vec algorithm model was proposed as a feature extraction algorithm. Moreover, to support this study, we employ Multinomial Naïve Bayes (MNB) to obtain more accurate results. There are three mainly steps, firstly, TF-IWF is employed used to compute the weight of word. Second, Word2vec algorithm is adopted to compute the vector of words, Third, we concatenate first and second steps. Finally, the users' opinions data is trained and classified through several machine learning classifiers especially MNB classifier. The experimental results indicate that the proposed method outperformed against previous approaches in terms of precision, recall, F-Score, and accuracy.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献