Hunting strategy for multi-robot based on wolf swarm algorithm and artificial potential field

Author:

Hamed Oussama,Hamlich Mohamed,Ennaji Mohamed

Abstract

The cooperation and coordination in multi-robot systems is a popular topic in the field of robotics and artificial intelligence, thanks to its important role in solving problems that are better solved by several robots compared to a single robot. Cooperative hunting is one of the important problems that exist in many areas such as military and industry, requiring cooperation between robots in order to accomplish the hunting process effectively. This paper proposed a cooperative hunting strategy for a multi-robot system based on wolf swarm algorithm (WSA) and artificial potential field (APF) in order to hunt by several robots a dynamic target whose behavior is unexpected. The formation of the robots within the multi-robot system contains three types of roles: the leader, the follower, and the antagonist. Each role is characterized by a different cognitive behavior. The robots arrive at the hunting point accurately and rapidly while avoiding static and dynamic obstacles through the artificial potential field algorithm to hunt the moving target. Simulation results are given in this paper to demonstrate the validity and the effectiveness of the proposed strategy.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reinforcement Learning-Based Cooperative Hunting for an Unmanned Surface Vehicle Swarm;2024 International Conference on Fuzzy Theory and Its Applications (iFUZZY);2024-08-10

2. Path Planning Techniques for Real-Time Multi-Robot Systems: A Systematic Review;Electronics;2024-06-07

3. Navigation method for autonomous mobile robots based on ROS and multi-robot improved Q-learning;Progress in Artificial Intelligence;2024-05-18

4. A novel approach for locating and hunting dynamic targets in unknown environments;Progress in Artificial Intelligence;2024-05-15

5. Path Planning Techniques for Multi-robot Systems: A Systematic Review;2023 15th International Conference on Innovations in Information Technology (IIT);2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3