An early fault detection approach in grid-connected photovoltaic (GCPV) system

Author:

Muhammad N.,Zainuddin H.,Jaaper E.,Idrus Z.

Abstract

<span>Faults in any components of PV system shall lead to performance degradation and if prolonged, it can leads to fire hazard. This paper presents an approach of early fault detection via acquired historical data sets of grid-connected PV (GCPV) systems. The approach is a developed algorithm comprises of failure detection on AC power by using Acceptance Ratio (AR) determination. Specifically, the implemented failure detection stage was based on the algorithm that detected differences between the actual and predicted AC power of PV system. Furthermore, the identified alarm of system failure was a decision stage which performed a process based on developed logic and decision trees. The results obtained by comparing two types of GCPV system (polycrystalline and monocrystalline silicon PV system), showed that the developed algorithm could perceive the early faults upon their occurrence. Finally, when applying AR to the PV systems, the faulty PV system demonstrated 93.38 % of AR below 0.9, while the fault free PV system showed only 31.4 % of AR below 0.9.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance of a 4 kWp grid-connected photovoltaic system using string inverter technology for a residential home;INTERNATIONAL CONFERENCE ON APPLIED COMPUTATIONAL INTELLIGENCE AND ANALYTICS (ACIA-2022);2023

2. Acceptance Ratio Analysis in Grid-Connected Photovoltaic System: Is There Any Difference Between DC and AC?;Pertanika Journal of Science and Technology;2021-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3