Bearing fault diagnosis in induction motor using continuous wavelet transform and convolutional neural networks

Author:

Boudiaf RabahORCID,Abdelkarim BourasORCID,Issam HaridaORCID

Abstract

Induction motors are widely used in various industries due to their high efficiency, reliability and low cost. However, faults in these motors can lead to serious problems, such as unexpected shutdowns, decreased efficiency, and even damage to other parts of the system. Monitoring and diagnosing these faults are necessary. In this study, we propose a new approach for diagnosing bearing faults using convolutional neural network (CNN) and continuous wavelet transform (CWT). The suggested approach uses Scalograms with various CWT types as the network's input and utilizes many epochs and various batch sizes (Multi Ep-Batch) throughout the bearing fault classification training and testing phases. To assess our method, we implemented an extension of the Squeeze Net pre-trained model (transfer learning). The results show that the proposed method outperforms traditional methods in terms of accuracy and computational efficiency in detecting bearing faults. These results are based on publicly available MFPT data, and the proposed approach is compared to traditional methods. This work opens new research avenues in the field of bearing fault diagnosis and provides a promising solution for real-world applications.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Intelligent Fault Diagnosis Method for Bearings with Multi-Source Data and Improved GASA;Sensors;2024-08-15

2. Enhanced Bearing Fault Diagnosis under Strong Noise: An improved Inception Inverted Residual Ghost ShuffleNet;Proceedings of the 2024 International Conference on Generative Artificial Intelligence and Information Security;2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3