IDCUP Algorithm to Classifying Arbitrary Shapes and Densities for Center-based Clustering Performance Analysis

Author:

Altaf Saud1ORCID,Waseem Waseem Muhammad2ORCID,Kazmi Laila3

Affiliation:

1. Auckland University of Technology

2. Manukau Institute of Technology, New Zealand

3. Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad Pakistan

Abstract

Aim/Purpose: The clustering techniques are normally considered to determine the significant and meaningful subclasses purposed in datasets. It is an unsupervised type of Machine Learning (ML) where the objective is to form groups from objects based on their similarity and used to determine the implicit relationships between the different features of the data. Cluster Analysis is considered a significant problem area in data exploration when dealing with arbitrary shape problems in different datasets. Clustering on large data sets has the following challenges: (1) clusters with arbitrary shapes; (2) less knowledge discovery process to decide the possible input features; (3) scalability for large data sizes. Density-based clustering has been known as a dominant method for determining the arbitrary-shape clusters. Background: Existing density-based clustering methods commonly cited in the literature have been examined in terms of their behavior with data sets that contain nested clusters of varying density. The existing methods are not enough or ideal for such data sets, because they typically partition the data into clusters that cannot be nested. Methodology: A density-based approach on traditional center-based clustering is introduced that assigns a weight to each cluster. The weights are then utilized in calculating the distances from data vectors to centroids by multiplying the distance by the centroid weight. Contribution: In this paper, we have examined different density-based clustering methods for data sets with nested clusters of varying density. Two such data sets were used to evaluate some of the commonly cited algorithms found in the literature. Nested clusters were found to be challenging for the existing algorithms. In utmost cases, the targeted algorithms either did not detect the largest clusters or simply divided large clusters into non-overlapping regions. But, it may be possible to detect all clusters by doing multiple runs of the algorithm with different inputs and then combining the results. This work considered three challenges of clustering methods. Findings: As a result, a center with a low weight will attract objects from further away than a centroid with higher weight. This allows dense clusters inside larger clusters to be recognized. The methods are tested experimentally using the K-means, DBSCAN, TURN*, and IDCUP algorithms. The experimental results with different data sets showed that IDCUP is more robust and produces better clusters than DBSCAN, TURN*, and K-means. Finally, we compare K-means, DBSCAN, TURN*, and to deal with arbitrary shapes problems at different datasets. IDCUP shows better scalability compared to TURN*. Future Research: As future recommendations of this research, we are concerned with the exploration of further available challenges of the knowledge discovery process in clustering along with complex data sets with more time. A hybrid approach based on density-based and model-based clustering algorithms needs to compare to achieve maximum performance accuracy and avoid the arbitrary shapes related problems including optimization. It is anticipated that the comparable kind of the future suggested process will attain improved performance with analogous precision in identification of clustering shapes.

Publisher

Informing Science Institute

Subject

Information Systems and Management,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A fair-multicluster approach to clustering of categorical data;Central European Journal of Operations Research;2022-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3