A fair-multicluster approach to clustering of categorical data

Author:

Santos-Mangudo CarlosORCID,Heras Antonio J.ORCID

Abstract

AbstractIn the last few years, the need of preventing classification biases due to race, gender, social status, etc. has increased the interest in designing fair clustering algorithms. The main idea is to ensure that the output of a cluster algorithm is not biased towards or against specific subgroups of the population. There is a growing specialized literature on this topic, dealing with the problem of clustering numerical data bases. Nevertheless, to our knowledge, there are no previous papers devoted to the problem of fair clustering of pure categorical attributes. In this paper, we show that the Multicluster methodology proposed by Santos and Heras (Interdiscip J Inf Knowl Manag 15:227–246, 2020. https://doi.org/10.28945/4643) for clustering categorical data, can be modified in order to increase the fairness of the clusters. Of course, there is a trade-off between fairness and efficiency, so that an increase in the fairness objective usually leads to a loss of classification efficiency. Yet it is possible to reach a reasonable compromise between these goals, since the methodology proposed by Santos and Heras (2020) can be easily adapted in order to get homogeneous and fair clusters.

Funder

Universidad Complutense de Madrid

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting Outliers in Context of Clustering Imbalanced Categorical Data;International Conference on Information Systems Development;2024-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3