Comparative study on early recognition and identifying diabetic retinopathy with different layers in CNN

Author:

Kumari Gorli L. Aruna, ,Padmaja Poosapati,Suma Jaya G., ,

Abstract

Diabetes is the most prevalent condition worldwide, and diabetic retinopathy (DR) is a subsequent condition caused by acute diabetic cases. It causes severe degeneration of the retina. The compounding blood vessels bloat and often burst, causing fluid leaks in the aqueous humor. This, in turn, causes the creation of undesirable nerve fiber infractions from the occlusion of arteries. Diagnosis requires a manual retinal examination that can often be inconsistent and deliberate with potential flaws in the diagnosis. Early detection through an ophthalmologist is paramount to prevent the prognosis of severe vision loss. Considering the current leap of machine learning in the field of healthcare, early detection of DR can be potentially made efficient with intelligent systems. This research proposes methodologies to fine-tune the existing pre-trained architectures, attaining the classification accuracies of 98% to classify the ocular fundus images which identify early prediction of diabetes. Additionally, this study presents an exposition of other equally scrutinized approaches to ultimately showcase a deep neural network architecture that can precisely classify normal fundus and degenerated fundus from the lowest to the most severe hierarchy. Among several layers in the CNN model pre-tuning and post-tuning exception layers outperformed with good results.

Publisher

International Journal of Advanced and Applied Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Transfer Learning Model for Automated Diabetic Retinopathy Grading in Resource-Constrained Environment;2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS);2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3