Affiliation:
1. Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
2. School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore
3. NUH Eye Surgery, Department of Opthalmology, National University Hospital, Singapore
4. Department of Medical System Engineering, Chiba University, Japan
Abstract
Diabetes mellitus is a heterogeneous clinical syndrome characterized by hyperglycaemia and the long-term complications are retinopathy, neuropathy, nephropathy, and cardiomyopathy. It is a leading cause of blindness. Diabetic retinopathy is the progressive pathological alterations in the retinal microvasculature, leading to areas of retinal non-perfusion, increased vascular permeability, and the pathological proliferation of retinal vessels. Hence, it is beneficial to have regular cost-effective eye screening for diabetes subjects. Nowadays, different stages of diabetes retinopathy are detected by retinal examination using indirect biomicroscopy by senior ophthalmologists. In this work, morphological image processing and support vector machine (SVM) techniques were used for the automatic diagnosis of eye health. In this study, 331 fundus images were analysed. Five groups were identified: normal retina, mild non-proliferative diabetic retinopathy, moderate non-proliferative diabetic retinopathy, severe non-proliferative diabetic retinopathy, and proliferative diabetic retinopathy. Four salient features blood vessels, microaneurysms, exudates, and haemorrhages were extracted from the raw images using image-processing techniques and fed to the SVM for classification. A sensitivity of more than 82 per cent and specificity of 86 per cent was demonstrated for the system developed.
Subject
Mechanical Engineering,General Medicine
Cited by
145 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献