Interval type-2 fuzzy approach for retinopathy detection in fundus images

Author:

Ashir Abubakar Muhammad

Abstract

In the manuscript, an automatic approach for analysis and detection of various stages of retinopathy defects in human eyes has been proposed. The approach consists of a robust preprocessing technique of the retina fundus image to mitigate the effects of noise and poor lightening in the image. To realize a compressive analysis of the defects, methods for extracting blood vessels and optic disc in the fundus image has also been developed. Adaptive Histogram Equalization (AHE), median filtering and Connected Component Analysis techniques were used in separating blood vessels and optic disc from each fundus image. The pre-processing utilizes canny edge detection and Morphological Closing on the fundus image. An interval type-2 fuzzy (IT2F) clustering is applied to segments an input image into four clusters. These four clusters from the fuzzy segmentation are further analyzed to extract various stages of retinopathy abnormalities (e.g., Hemorrhage, hard exudates etc.). The extracted blood vessels and optic disc are removed from the analysis to enhance the defects detection process. Experiments were conducted on DIARETDB1 database. The experimental results obtained are validated using the ground-truth images contained in DIARETDB1 database. Impressive results are recorded throughout the experiment. Hard-Exudates and Hemorrhage were detected from the fundus images and results from similarity indexes such as, accuracy (94.11%) sensitivity (93.03%) and specificity (98.45%) were recorded.

Publisher

IOS Press

Reference22 articles.

1. Retinal blood vessel localization approach based on bee colony swarm optimization, fuzzy c-means and pattern search;Hassanien;J Vis Commun Image Represent [Internet].,2015

2. Dual-centers type-2 fuzzy clustering framework and its verification and validation indices;Golsefid;Appl Soft Comput [Internet].,2016

3. Blood vessel segmentation of fundus images by major vessel extraction and subimage classification;Roychowdhury;IEEE J Biomed Health Inform.,2015

4. Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images;Franklin;Biocybern Biomed Eng [Internet].,2014

5. Optimal design of type-2 fuzzy systems for  diabetes classification based on genetic  algorithms;Melin;Int J Hybrid Intell Syst.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3