Changes in structural, physicochemical properties and digestibility of partial hydrolyzed and annealed maize starch

Author:

Trinh Khanh Son, ,Le Hai Luu,

Abstract

The objective of this study is to create modified starch with high RS content (especially heat resistant RS) through the combination of two techniques of restricted hydrolysis and annealing. Native maize starch was partially hydrolyzed in HCl solution at room temperature for 4, 14, 23, and 30h. Then, native starch (NC) and partially hydrolyzed starch (PAH) were annealed (ANN) at 50°C for 24h. The structural, physicochemical, and in vitro digestibility properties were measured. The apparent amylose content (AAC) was slightly increased at low hydrolysis level (HL) whilst decreased sharply at high HL. AAC was almost unchanged after annealing. Intrinsic viscosity, molecular weight and degree of polymerization decreased after PAH treatment whilst increased after ANN. The α-helix/amorphous ratio (AH/AMS) did not change much after PAH although it slightly increased after ANN. Relative crystallinity (DRC) increased slightly at low DH and decreased sharply at too high HL. Furthermore, ANN treatment increased DRC. The crystal pattern (A-type) did not change after PAH and ANN treatment. The gelatinization temperature of starch decreased after double modification. In terms of in vitro digestibility, the content of rapidly digested starch (RDS) increased but resistant starch (RS) significantly decreased after gelatinization pre-treatment. The content of resistant starch (RS) and boiling-stable resistant starch (bRS) increased sharply after PAH and ANN treatment. In particular, the highest bRS reached 24.2% under double treatment. While, the maximum bRS of PAH, ANN, and NC starches were 15.2%, 8.9%, and 4.2%, respectively. Actually, native starch contains poor properties and functions and is not suitable for industrial applications. In fact, the production of chemically modified starch with special technological features or high RS concentration is very interesting. In this study, the combination of the two processing techniques (PAH and ANN) significantly increased RS, especially bRS, which is capable of controlling blood glucose, body weight, and other benefits to human health.

Publisher

International Journal of Advanced and Applied Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3