Rethinking the implementation and application of the Benczur-Karger minimum cuts algorithm

Author:

Gu HanqinORCID,

Abstract

In graph theory and network analysis, finding the minimum cut in a graph is a fundamental algorithmic challenge. This paper explores the development and application of Benczur-Karger’s minimum cut algorithms, focusing on the relationship between theoretical advancements and practical implementation. Despite the algorithm's advantages, there are challenges related to its implementation complexities and the effects of compression factor settings. To address these issues, this paper first implements Benczur-Karger’s minimum cuts algorithm in Python and discusses the implementation details. Additionally, we propose a new compression factor setting for Benczur-Karger’s minimum cuts algorithm and conduct an experiment with this new setting. The experimental results show that our proposed compression factor performs better than the original one. Finally, we discuss the application of Benczur-Karger’s minimum cuts algorithm in social network analysis, a field where its use has been limited. The code is available at https://github.com/HarleyHanqin/Modified_BK.

Publisher

International Journal of Advanced and Applied Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3