Expander flows, geometric embeddings and graph partitioning

Author:

Arora Sanjeev1,Rao Satish2,Vazirani Umesh2

Affiliation:

1. Princeton University, Princeton, New Jersey

2. UC Berkeley, Berkeley, California

Abstract

We give a O (√log n )-approximation algorithm for the sparsest cut, edge expansion, balanced separator, and graph conductance problems. This improves the O (log n )-approximation of Leighton and Rao (1988). We use a well-known semidefinite relaxation with triangle inequality constraints. Central to our analysis is a geometric theorem about projections of point sets in R d , whose proof makes essential use of a phenomenon called measure concentration. We also describe an interesting and natural “approximate certificate” for a graph's expansion, which involves embedding an n -node expander in it with appropriate dilation and congestion. We call this an expander flow.

Funder

Division of Computing and Communication Foundations

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 242 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the parameterized complexity of Sparsest Cut and Small-Set Expansion problems;Discrete Applied Mathematics;2024-10

2. Capacity bounds for hyperbolic neural network representations of latent tree structures;Neural Networks;2024-10

3. Rethinking the implementation and application of the Benczur-Karger minimum cuts algorithm;International Journal of ADVANCED AND APPLIED SCIENCES;2024-07

4. A Simpler and Parallelizable O(√log n)-approximation Algorithm for Sparsest Cut;Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures;2024-06-17

5. Semidefinite Programming and Linear Equations vs. Homomorphism Problems;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3