Annealing-induced recovery of indents in thin Au(Fe) bilayer films

Author:

Kosinova Anna,Schwaiger Ruth,Klinger Leonid,Rabkin Eugen

Abstract

We employed depth-sensing nanoindentation to produce ordered arrays of indents on the surface of 50 nm-thick Au(Fe) films deposited on sapphire substrates. The maximum depth of the indents was approximately one-half of the film thickness. The indented films were annealed at a temperature of 700 °C in a forming gas atmosphere. While the onset of solid-state dewetting was observed in the unperturbed regions of the film, no holes to the substrate were observed in the indented regions. Instead, the film annealing resulted in the formation of hillocks at the indent locations, followed by their dissipation and the formation of shallow depressions nearby after subsequent annealing treatments. This annealing-induced evolution of nanoindents was interpreted in terms of annihilation of dislocation loops generated during indentation, accompanied by the formation of nanopores at the grain boundaries and their subsequent dissolution. The application of the processes uncovered in this work show great potential for the patterning of thin films.

Publisher

Beilstein Institut

Subject

Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3