How and why kinetics, thermodynamics, and chemistry induce the logic of biological evolution

Author:

Pross Addy,Pascal Robert

Abstract

Thermodynamic stability, as expressed by the Second Law, generally constitutes the driving force for chemical assembly processes. Yet, somehow, within the living world most self-organisation processes appear to challenge this fundamental rule. Even though the Second Law remains an inescapable constraint, under energy-fuelled, far-from-equilibrium conditions, populations of chemical systems capable of exponential growth can manifest another kind of stability, dynamic kinetic stability (DKS). It is this stability kind based on time/persistence, rather than on free energy, that offers a basis for understanding the evolutionary process. Furthermore, a threshold distance from equilibrium, leading to irreversibility in the reproduction cycle, is needed to switch the directive for evolution from thermodynamic to DKS. The present report develops these lines of thought and argues against the validity of a thermodynamic approach in which the maximisation of the rate of energy dissipation/entropy production is considered to direct the evolutionary process. More generally, our analysis reaffirms the predominant role of kinetics in the self-organisation of life, which, in turn, allows an assessment of semi-quantitative constraints on systems and environments from which life could evolve.

Publisher

Beilstein Institut

Subject

Organic Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3