Affiliation:
1. Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
2. Institut des Biomolécules Max Mousseron (UMR 5247, CNRS, Universités Montpellier 1 and Montpellier 2), Université Montpellier 2, Place E. Bataillon 34095, Montpellier Cedex 05, France
Abstract
The origin of life (OOL) problem remains one of the more challenging scientific questions of all time. In this essay, we propose that following recent experimental and theoretical advances in systems chemistry, the underlying principle governing the emergence of life on the Earth can in its broadest sense be specified, and may be stated as follows: all stable (persistent) replicating systems will tend to evolve over time towards systems of greater stability. The stability kind referred to, however, is dynamic kinetic stability, and quite distinct from the traditional thermodynamic stability which conventionally dominates physical and chemical thinking. Significantly, that stability kind is generally found to be enhanced by increasing complexification, since added features in the replicating system that improve replication efficiency will be reproduced, thereby offering an explanation for the emergence of life's extraordinary complexity. On the basis of that simple principle, a fundamental reassessment of the underlying chemistry–biology relationship is possible, one with broad ramifications. In the context of the OOL question, this novel perspective can assist in clarifying central ahistoric aspects of abiogenesis, as opposed to the many historic aspects that have probably been forever lost in the mists of time.
Subject
General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献