Modification of a single-molecule AFM probe with highly defined surface functionality

Author:

Long Fei,Cao Bin,Khanal Ashok,Fang Shiyue,Shahbazian-Yassar Reza

Abstract

Single-molecule force spectroscopy with an atomic force microscope has been widely used to study inter- and intramolecular interactions. To obtain data consistent with single molecular events, a well-defined method is critical to limit the number of molecules at the apex of an AFM probe to one or to a few. In this paper, we demonstrate an easy method for single-molecule probe modification by using the Cu-catalyzed alkyne–azide cycloaddition reaction. Excess terminal alkynes were covalently attached to the probe, and a bi-functional molecule containing an azide at one end and a carboxylic acid at the other was dissolved in the reaction solution. By simply contacting the probe and the Cu substrate, controlled carboxylation on the probe apex could be achieved, since the ‘click’ reaction requires the co-exist of alkyne, azide and Cu(I). The finite contact area would result in a highly defined surface functionality of the probe down to single molecule level with high reproducibility.

Publisher

Beilstein Institut

Subject

Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3