Author:
Straumal Boris B,Protasova Svetlana G,Mazilkin Andrei A,Tietze Thomas,Goering Eberhard,Schütz Gisela,Straumal Petr B,Baretzky Brigitte
Abstract
The influence of the grain boundary (GB) specific area sGB on the appearance of ferromagnetism in Fe-doped ZnO has been analysed. A review of numerous research contributions from the literature on the origin of the ferromagnetic behaviour of Fe-doped ZnO is given. An empirical correlation has been found that the value of the specific grain boundary area sGB is the main factor controlling such behaviour. The Fe-doped ZnO becomes ferromagnetic only if it contains enough GBs, i.e., if sGB is higher than a certain threshold value sth = 5 × 104 m2/m3. It corresponds to the effective grain size of about 40 μm assuming a full, dense material and equiaxial grains. Magnetic properties of ZnO dense nanograined thin films doped with iron (0 to 40 atom %) have been investigated. The films were deposited by using the wet chemistry “liquid ceramics” method. The samples demonstrate ferromagnetic behaviour with Js up to 0.10 emu/g (0.025 μB/f.u.ZnO) and coercivity Hc ≈ 0.03 T. Saturation magnetisation depends nonmonotonically on the Fe concentration. The dependence on Fe content can be explained by the changes in the structure and contiguity of a ferromagnetic “grain boundary foam” responsible for the magnetic properties of pure and doped ZnO.
Subject
Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献