Multistep organic synthesis of modular photosystems

Author:

Sakai Naomi,Matile Stefan

Abstract

Quite extensive synthetic achievements vanish in the online supporting information of publications on functional systems. Underappreciated, their value is recognized by experts only. As an example, we here focus in on the recent synthesis of multicomponent photosystems with antiparallel charge-transfer cascades in co-axial hole- and electron-transporting channels. The synthetic steps are described one-by-one, starting with commercial starting materials and moving on to key intermediates, such as asparagusic acid, an intriguing natural product, as well as diphosphonate “feet”, and panchromatic naphthalenediimides (NDIs), to finally reach the target molecules. These products are initiators and propagators for self-organizing surface-initiated polymerization (SOSIP), a new method introduced to secure facile access to complex architectures. Chemoorthogonal to the ring-opening disulfide exchange used for SOSIP, hydrazone exchange is then introduced to achieve stack exchange, which is a “switching” technology invented to drill giant holes into SOSIP architectures and fill them with functional π-stacks of free choice.

Publisher

Beilstein Institut

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3