Abstract
In this work, a new type of self-powered, high-performance ultra-thin p-Si/n-ZnO nanowire (NW) flexible photodetector (PD) and its application as full-spectrum optical sensor and pyroelectric nanogenerator (PENG) are demonstrated. The working mechanism of PDs for PENGs is carefully investigated and systematically analyzed. The self-powered PDs exhibit high responsivity (1200 mA/W), high detectivity (1013 Jones) and fast response (τr = 18 μs, τf = 25 μs) under UV illumination. High and stable short-circuit output currents at each wavelength from ultraviolet (UV) to near-infrared (NIR) demonstrates that the device can realize full-spectrum optical communication. An experiment in which the PENG powers other devices is designed to further demonstrate the proposed working mechanism. This work provides an effective approach to realize self-powered, high-performance PDs for full-spectrum communication. Also, the fabrication of the PENG utilizing a simple and low-cost method shows its potential applications in self-powered flexible electronic devices.
Subject
Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献