Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

Author:

Prepelita PetronelaORCID,Stavarache IonelORCID,Craciun DoinaORCID,Garoi FlorinORCID,Negrila CatalinORCID,Sbarcea Beatrice GabrielaORCID,Craciun ValentinORCID

Abstract

In this work, rapid thermal annealing (RTA) was applied to indium tin oxide (ITO) films in ambient atmosphere, resulting in significant improvements of the quality of the ITO films that are commonly used as conductive transparent electrodes for photovoltaic structures. Starting from a single sintered target (purity 99.95%), ITO thin films of predefined thickness (230 nm, 300 nm and 370 nm) were deposited at room temperature by radio-frequency magnetron sputtering (rfMS). After deposition, the films were subjected to a RTA process at 575 °C (heating rate 20 °C/s), maintained at this temperature for 10 minutes, then cooled down to room temperature at a rate of 20 °C/s. The film structure was modified by changing the deposition thickness or the RTA process. X-ray diffraction investigations revealed a cubic nanocrystalline structure for the as-deposited ITO films. After RTA, polycrystalline compounds with a textured (222) plane were observed. X-ray photon spectroscopy was used to confirm the beneficial effect of the RTA treatment on the ITO chemical composition. Using a Tauc plot, values of the optical band gap ranging from 3.17 to 3.67 eV were estimated. These values depend on the heat treatment and the thickness of the sample. Highly conductive indium tin oxide thin films (ρ = 7.4 × 10−5 Ω cm) were obtained after RTA treatment in an open atmosphere. Such films could be used to manufacture transparent contact electrodes for solar cells.

Publisher

Beilstein Institut

Subject

Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3